If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
Two friends were stuck in a cottage. They had nothing to do and thus they started playing cards. Suddenly the power went off and Friend 1 inverted the position of 15 cards in the normal deck of 52 cards and shuffled it. Now he asked Friend 2 to divide the cards into two piles (need not be equal) with equal number of cards facing up. The room was quite dark and Friend 2 could not see the cards. He thinks for a while and then divides the cards in two piles.
On checking, the count of cards facing up is same in both the piles. How could Friend 2 have done it ?
In a box, there is a jumble of 7 red balls, 6 blue balls, 5 green balls, and 4 yellow balls. What is the minimum number of balls, will you have to pick up so that you have at least 4 balls of the same colour?
A mathematician couple was having a Frappuccino in Starbucks sitting opposite to each other. Suddenly the guy noticed the text written on the paper in front of them and exclaimed that it was wrong. The girl denied it and said it is appropriate. Both are correct. What is written on the paper?
The day before the 1996 U.S. presidential election, the NYT Crossword contained the clue “Lead story in tomorrow’s newspaper,” the puzzle was built so that both electoral outcomes were correct answers, requiring 7 other clues to have dual responses.