Six glasses are in a row. The first three are filled with milk and the last three are empty. By moving only one glass, can you arrange them so that the full and the empty glasses alternate?
Two friends were stuck in a cottage. They had nothing to do and thus they started playing cards. Suddenly the power went off and Friend 1 inverted the position of 15 cards in the normal deck of 52 cards and shuffled it. Now he asked Friend 2 to divide the cards into two piles (need not be equal) with equal number of cards facing up. The room was quite dark and Friend 2 could not see the cards. He thinks for a while and then divides the cards in two piles.
On checking, the count of cards facing up is same in both the piles. How could Friend 2 have done it ?
Find out a multi-digit number that if multiplied by the number 9 or any of its multiplications products (i.e. 18, 27, 36, 45,..) will result in the multiplication factor repeated (n) number of times.