There is an ancient kingdom where every married woman keeps information regarding the fidelity of other men. However, what they don't know is the fidelity of their own husbands. Also, there is an ancient belief that they don't tell each other about the fidelity of their husbands.
On a certain day, the queen of the kingdom declares that she has identified at least one unfaithful man in the kingdom. She allows the wives to identify and gives them authority to kill their husbands if they are unfaithful at midnight.
In a concert, Christina is performing a dance show with her group.
At 10:00, she and her crew were dancing in an absolutely straight line. At that time Christina was standing in 4th position from both the front and back end of the row.
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
In front of you, there are 9 coins. They all look absolutely identical, but one of the coins is fake. However, you know that the fake coin is lighter than the rest, and in front of you is a balance scale. What is the least number of weightings you can use to find the counterfeit coin?