A convention is held where all the big logicians are summoned. The master places a band on everyone's forehead. Now all of them can see others bands but can't see his own. Then they are told that there are different colours of bands. All the logicians sit in circle and they are further explained that a bell will ring at regular intervals. The moment when a logician knew the colour of band on his forehead, he will leave at the next bell. If anyone leaves at the wrong bell, he will be disqualified.
The master assures the logicians that the puzzle will not be impossible for anyone of them. How will the logicians manage ?
You are given a cube that is made with the help of 10x10x10 smaller cubes summing up to a total of 1000 smaller cubes. You are asked to take off one layer of the cubes.
How many remain now?
Below toothpicks/matchsticks indicate the group of fishes moving from west to east direction. Can you make them move from east to west by just moving three toothpicks/matchsticks?