I can sizzle like bacon,
I am made with an egg,
I have plenty of backbone, but lack a good leg,
I peel layers like onions, but still remain whole,
I can be long, like a flagpole, yet fit in a hole.
A car is crossing a 20 km-long bridge. The bridge can support at most 1500kg of weight over it. If somehow, the weight on the bridge becomes more than that, it will break.
Now, the weight of the car is exactly 1500kg. At the midway, a bird comes and sits on the roof of the car. This bird weighs exactly 200 grams.
Can you tell if the bridge breaks at this point or not?
The king of Octopuses has servants who have six, seven or eight legs. The distinguishing characteristics of the servants is that the one with seven legs always lie but the one with either six or eight legs speak the truth always.
One day, four servants meet and converse:
The black one says, 'We have 28 legs altogether.'
The green one says, 'We have 27 legs altogether.'
The yellow one says, 'We have 26 legs altogether.'
The red one says, 'We have 25 legs altogether.'
Can you identify the colour of the servant who is speaking the truth?
We know that money can be names differently for the purpose it is used for. Some of the examples of money given at following places or for following activities:
In temple = Daan
In school = Fees
During marriage = Dowry
For divorce = Alimony
Paying government = Tax
In court = Fine
Employer to employee = Salary
To kidnappers = Ransom
For illegal reason = Bribe
To civil servant retirees = Pension
Do you know what do we call the money a husband gives to his wife?
You stand in front of two doors. A guard stands next to each door. You know the following things: one path leads to paradise, the other leads to death. You cannot distinguish between the two doors. You also know that one of the two guards always tells the truth and the other always lies. You have permission to ask one guard one question to discover which door leads to paradise. What one question would you ask to guarantee you enter the door to paradise?
10 people came into a hotel with 9 rooms and each guest wanted his own room. The bellboy solved this problem.
He asked the tenth guest to wait for a little with the first guest in room number 1. So in the first room, there were two people. The bellboy took the third guest to room number 2, the fourth to number 3, ..., and the ninth guest to room number 8. Then he returned to room number 1 and took the tenth guest to room number 9, still vacant.
How can everybody have his own room?