If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
Pronounced as 1 letter, And written with 3, 2 letters there are, and 2 only in me. I’m double, I’m single, I’m black blue and grey, I’m read from both ends, and the same either way. What am I?