Two fathers and two sons decided to go to a shop and buy some sweets upon reaching. Each of them bought 1 kg of sweet. All of them returned home after some time and found out that they had 3kg of sweets with them.
They did not eat the sweets in the way, nor threw or lose anything. Then, how can this be possible?
As we know that white starts the game of chess. Can you find the scenario shown in the picture below is possible when all the white pieces are at the original place while the black pawn is not as in the below picture?
A bank customer had $100 in his account. He then made 6 withdrawals. He kept a record of these withdrawals, and the balance remaining in the account, as follows:
It has five wheels, though often think four, You cannot use it without that one more, You can put things in it, you can strap things on top, You can't find it in the market, but you can still go shop. What is it?
A rain drop fell from one leaf to another leaf and lost 1/4th of its volume. It then fell to another leaf and lost 1/5th of the volume. It again fell on another leaf and lost 1/5th of the volume.
This process kept repeating till it fell on the last leaf losing 1/75th of its volume.
Can you calculate the total percentage of loss from the initial volume when the drop has fallen to the last leaf accurate up to two decimal places?