Four people need to cross a rickety bridge at night. Unfortunately, they have only one torch and the bridge is too dangerous to cross without one. The bridge is only strong enough to support two people at a time. Not all people take the same time to cross the bridge. Times for each person: 1 min, 2 mins, 7 mins and 10 mins. What is the shortest time needed for all four of them to cross the bridge?
Four cars come to a four-way stop, each coming from a different direction. They can’t decide who got there first, so they all go forward at the same time. All 4 cars go, but none crash into each other. How is this possible?
There is a shop where written:
Buy 1 for $1
10 for $2
100 for $3
I needed 999 and still only paid $3. How could this be financially viable for the shop-keeper?
You have four chains. Each chain has three links in it. Although it is difficult to cut the links, you wish to make a single loop with all 12 links. What is the fewest number of cuts you must make to accomplish this task?