I want to fill my bucket using both cold and hot water.
I have two taps for both cold and hot water. The hot water tap fills the bucket in exact 6 hours and the cold water tap fills the bucket in exact 4 hours.
I turn both of them simultaneously but I forgot to turn off another tap which removes the water out of the bucket. This tap can empty the bucket in 12 hours.
Three men in a cafe order a meal the total cost of which is $15. They each contribute $5. The waiter takes the money to the chef who recognises the three as friends and asks the waiter to return $5 to the men.
The waiter is not only poor at mathematics but dishonest and instead of going to the trouble of splitting the $5 between the three he simply gives them $1 each and pockets the remaining $2 for himself.
Now, each of the men effectively paid $4, the total paid is therefore $12. Add the $2 in the waiters pocket and this comes to $14. Where has the other $1 gone from the original $15?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
Its something that each of us devours,
Not just us but birds, beats, trees, and flowers,
Frets iron and nibbles steel,
Toil hard stones to meal,
Exterminates king, collapse town,
And blows the mountains down.