A man plots the murder of his wife. His plan is full proof. Nobody saw them leaving their house. He stabbed her with a knife while driving. She died on the spot. He threw her body in a valley. He threw the knife carefully wiping his finger prints on a random garbage bin. Then he went back to his home and no one was watching him this time as well.
After an hour, he was called by the local police department who informed him that his wife was murdered. They asked him to reach the scene of crime immediately. But as soon as he arrived at the crime scene, he was arrested by them.
How did the police know that he himself is the murderer?
A man calls his dog from the opposite side of a river. The dog crosses the river without a bridge or a boat and manages to not get wet. How is this possible?
I have thought of a number that is made up by using all the ten digits just once. Here are a few clues for you to guess my number:
First digits is divisible by 1.
First two digits are divisible by 2.
First three digits are divisible by 3.
First four digits are divisible by 4.
First five digits are divisible by 5.
First six digits are divisible by 6.
First seven digits are divisible by 7.
First eight digits are divisible by 8.
First nine digits are divisible by 9.
The number is divisible by 10.
If a zookeeper had 100 pairs of animals in her zoo, and two pairs of babies are born for each one of the original animals, then (sadly) 23 animals don’t survive, how many animals do you have left in total?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.