If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
In the Wild West, you are challenged into a death match by two bounty hunters nicknamed Golden Revolver (GR) and Killer Boots (KB). You accept the challenge. None of you want to waste any of the bullet and so a certain rules are laid down:
1) All of you will shoot in a given order till the last man standing.
2) Each of you shoots only once upon his turn.
3) If any one of you is injured, the other two will finish him off with an iron rod.
4) The worst shooter of all (which is you) shoots first and the best one shoots at the last.
Now, how will you plan things if you know that you hit every third shot of yours, KB hits every second shot and GR hits every shot ?