One fine day, an intellectual man came to the emperor's court with the aim of testing Birbal's wittiness. In order to do this, he challenged Birbal to answer his question and hence prove that he was as intelligent and witty as he was said to be.
He asked Birbal, Do you want me to ask one difficult question or a hundred easy ones?
Since both Akbar and Birbal had had a tough day and were eager to leave, Birbal hastily told the intellectual to ask him a single difficult question.
Intellectual: OK. Tell me what came first into the world, the egg or the chicken?
Of course, the chicken, Birbal replied with a smile.
This time with a note of victory in his voice, the intellectual asked Birbal, How will you demonstrate that?
What did Birbal say?
There is a river to cross using a river raft and there are eight people (father, mother, policeman, thief, 2 daughters and 2 sons). No one knows to operate the raft except the adults and also excluding the thief. Only two people can go in the raft at a time. The raft should keep coming back and forth in order to pick and drop the people.
Rules to be followed:
Father: the father cannot stay in the raft or outside the raft without the presence of the mother.
Mother: the mother cannot stay in the raft or outside the rat without the presence of the father.
Thief: the thief is not allowed to stay with any of the family members unless there is a policeman.
Policeman: the policeman can travel with anyone.
2 sons and 2 daughters: they are not allowed to travel in the raft without the presence of an adult. They cannot either travel in the presence of only thieves without the policeman. The sons cannot be with their mothers without their father's supervision. The daughters are not allowed to be there with their fathers without the supervision of their mothers. But the daughters and the sons can be left unsupervised (as long as the other rules are applied).
What is the sequence that the people should follow in order to cross the river through the raft keeping in mind all the rules?
The rules are applicable not only in the raft but also outside the raft.
A rain drop fell from one leaf to another leaf and lost 1/4th of its volume. It then fell to another leaf and lost 1/5th of the volume. It again fell on another leaf and lost 1/5th of the volume.
This process kept repeating till it fell on the last leaf losing 1/75th of its volume.
Can you calculate the total percentage of loss from the initial volume when the drop has fallen to the last leaf accurate up to two decimal places?
A man desired to get into his work building, however he had forgotten his code.
However, he did recollect five pieces of information
* Fifth number + Third number = 14
* The fourth number is one more than the second number.
* The first number is one less than twice the second number.
* The second number and the third number equals 10.
* The sum of all five numbers is 30.