Three people enter a room and have a green or blue hat placed on their heads. They cannot see their own hat but can see the other hats.
The colour of each hat is purely random. They could all be green, blue, or any combination of green and blue.
They need to guess their own hat colour by writing it on a piece of paper, or they can write 'pass'.
They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.
If at least one of them guesses correctly they win $10,000 each, but if anyone guesses incorrectly they all get nothing.
What is the best strategy?
In a science lab, a petri dish hosts a healthy colony of yeast for an experiment. Now every minute, all the yeast cells divide into two. At noon, there was just a single cell of yeast and at 1:22, the Petri dish was half full. Can you calculate when the dish will be full of yeast?