Three fair coins are tossed in the air and they land with heads up. Can you calculate the chances that when they are tossed again, two coins will again land with heads up?
What does man love more than life, and hate more than death or mortal strife; that which satisfied men want; the poor have, and the rich require; the miser spends, the spendthrift saves, and all men carry to their graves?
I am thinking of a five-digit number such that:
The first and last digits are the same, their submission is an even number and multiplication is an odd number and is equal to the fourth number. Subtract five from it and we obtain the second number. Then divide into exact halves and we get the 3rd number.
There is a box in which distinct numbered balls have been kept. You have to pick two balls randomly from the lot.
If someone is offering you a 2 to 1 odds that the numbers will be relatively prime, for example
If the balls you picked had the numbers 6 and 13, you lose $1.
If the balls you picked had the numbers 5 and 25, you win $2.