Thirty friends were on a hiking trip when they decided to enjoy the bonfire. They assembled for it and agreed to play a game. For that, they divided themselves into five teams with seven members each, forming five rows.
A convention is held where all the big logicians are summoned. The master places a band on everyone's forehead. Now all of them can see others bands but can't see his own. Then they are told that there are different colours of bands. All the logicians sit in circle and they are further explained that a bell will ring at regular intervals. The moment when a logician knew the colour of band on his forehead, he will leave at the next bell. If anyone leaves at the wrong bell, he will be disqualified.
The master assures the logicians that the puzzle will not be impossible for anyone of them. How will the logicians manage ?
I have one of the three numbers: 1, 2, or 3 in my mind. I speak only truth. You can ask me just one question for which I will only reply in yes or no or don't know. What question will you ask from me so that you are able to know the number?
A rubber ball keeps on bouncing back to 2/3 of the height from which it is dropped. Can you calculate the fraction of its original height that the ball will bounce after it is dropped and it has bounced four times without any hindrance ?