If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
Can you find a seven digit number which describes itself. The first digit is the number of zeros in the number. The second digit is the number of ones in the number, etc. For example, in the number 21200, there are 2 zeros, 1 one, 2 twos, 0 threes and 0 fours.
John bought 150 chocolates but he misplaced some of them. His Father asked him how many chocolates were misplaced.
He gave the following answer to him:
If you count in pairs, one remains
If you count in threes, two remain
If you count in fours, three remain
If you count in fives, four remain
If you count in sixes, five remain
If you count in sevens, no chocolate remains.
Can you analyze the statements and tell us how many chocolates were lost?
James Bond is caught up in a mysterious scenario where the evil villain has him blindfolded. He somehow breaks through the handcuffs but is unable to get the blindfold off. Upon searching, he comes across a bow and 3 arrows. He can hear the villain speak, and thus tries to take a shot at him. He launches the first arrow, it misses the villain. He then launches the second arrow and it misses by a greater margin.
What is the probability that this third shot our James bond takes will be worse than the second shot?