If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
Once upon a time, there was a castle on a square island. The entire island was surrounded by a 14m wide trench. The Romans had wanted to invade the castle and had brought a few wooden planks along with them to facilitate themselves in crossing the moat. The planks were however found to be only 13m long.
The Romans still managed to cross the trench. How did they do it?
For this puzzle, you might have to find logic in something illogical. But hey, it's fun and a healthy little break from your strenuous puzzle-solving sessions.
Can you decipher the meaning in the following cluster of letters?
A man hijacks an aeroplane transporting both passengers(8 of them) and valuable cargo. After taking the cargo, the man demands nine parachutes, puts one of them on, and jumps, leaving the other eight behind. Why did he want eight?
Vin Diesel is pulling a theft and has planned to run away with all the cash kept in the safe. But the only way to open the safe is the 13 character password. He has a set of five clues given to him by a trustworthy source.
Exactly two of the below statements are false.
The password is contained within this sentence.
The password is not in this hint.
The password is within only one of these statements.
At least one of the above statements is a lie.