If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
You stand in front of two doors. A guard stands next to each door. You know the following things: one path leads to paradise, the other leads to death. You cannot distinguish between the two doors. You also know that one of the two guards always tells the truth and the other always lies. You have permission to ask one guard one question to discover which door leads to paradise. What one question would you ask to guarantee you enter the door to paradise?
A game is being played where eight players can last for thirty-five minutes. Six substitutes alternate with each player in this game. Thus, all players are on the pitch for the same amount of time including the substitutes.
A tree doubled in height each year until it reached its maximum height over the course of ten years. How many years did it take for the tree to reach half its maximum height?
I am first found in caves, now prolific online; I am a depiction, a drawing, a symbol, or sign. I will convey whichever mood you could wish; or for that matter, a fist, flask, or fish. What am I?