Three people enter a room and have a green or blue hat placed on their heads. They cannot see their own hat but can see the other hats.
The colour of each hat is purely random. They could all be green, blue, or any combination of green and blue.
They need to guess their own hat colour by writing it on a piece of paper, or they can write 'pass'.
They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.
If at least one of them guesses correctly they win $10,000 each, but if anyone guesses incorrectly they all get nothing.
What is the best strategy?
Use the numbers 2, 3, 4 and 5 and the symbols + and = to make a true equation. Conditions: Each must be used exactly once and no other numbers or symbols can be used.
Suppose we lay down two cups in front of you. One of the cups is filled with tea and the other one with coffee. Now we ask you to take a spoonful of tea and mix it with the coffee. At this moment, the coffee cup has a mixture of tea and coffee. You have to take that mixture (spoonful) and add it back to the tea.
Can you now tell if the cup of coffee has more tea or the cup of tea has more coffee?
You have a square. What you have to do is cut and reassemble the square such that you create a Red Cross sign that has the same volume as that of the square.
John was visiting his friend Jacob. He found out that his friend's wife had just killed a burglar in self-defense.
John asks Jacob about what happened and he told that "His wife was watching television when suddenly the bell rang. She thought that it is her husband Jacob but she found the burglar who attacked her instantly and she got so frightened that she killed the burglar immediately with the knife.
John asked the police to arrest his friend's wife. Why?
The captain of a ship was telling this interesting story: "We travelled the sea far and wide. At one time, two of my sailors were standing on opposite sides of the ship. One was looking west and the other one east. And at the same time, they could see each other clearly." How can that be possible?