You are given 16 witch hats. The hats are divided in four different colours – red, blue, green and yellow. Every colour has been assigned to four hats. Now each of the hat will be glued with a label of an arithmetic sign – ‘+’, ‘-‘, ‘x’ or ‘/’. But you can label one sign only once on one colour. In such an arrangement, the hats can be uniquely defined by its colour and symbol.
Can you arrange all the 16 hats in a 4x4 grid in a fashion that no two rows and columns have a repetition of colour or sign?
We have arranged four hats in the below picture to assist you.
100 prisoners are stuck in the prison in solitary cells. The warden of the prison got bored one day and offered them a challenge. He will put one prisoner per day, selected at random (a prisoner can be selected more than once), into a special room with a light bulb and a switch which controls the bulb. No other prisoners can see or control the light bulb. The prisoner in the special room can either turn on the bulb, turn off the bulb or do nothing. On any day, the prisoners can stop this process and say "Every prisoner has been in the special room at least once". If that happens to be true, all the prisoners will be set free. If it is false, then all the prisoners will be executed. The prisoners are given some time to discuss and figure out a solution. How do they ensure they all go free?
There is a shop where written:
Buy 1 for $1
10 for $2
100 for $3
I needed 999 and still only paid $3. How could this be financially viable for the shop-keeper?
An octopus has 8 legs. A hippogriff has 6 legs and 2 pairs of wings. A sphinx has 6 legs and one pair of wings. Now we have all 3 kinds and a total of 18 insects in a cage. We have a total of 118 legs and 20 pairs of wings. How many insects do we have of each kind?
In the attached figure, you can see a chessboard and two rooks placed on the chess board. What you have to find is the number of squares that do not contain the rooks. How many are there?