There is a river to cross using a river raft and there are eight people (father, mother, policeman, thief, 2 daughters and 2 sons). No one knows to operate the raft except the adults and also excluding the thief. Only two people can go in the raft at a time. The raft should keep coming back and forth in order to pick and drop the people.
Rules to be followed:
Father: the father cannot stay in the raft or outside the raft without the presence of the mother.
Mother: the mother cannot stay in the raft or outside the rat without the presence of the father.
Thief: the thief is not allowed to stay with any of the family members unless there is a policeman.
Policeman: the policeman can travel with anyone.
2 sons and 2 daughters: they are not allowed to travel in the raft without the presence of an adult. They cannot either travel in the presence of only thieves without the policeman. The sons cannot be with their mothers without their father's supervision. The daughters are not allowed to be there with their fathers without the supervision of their mothers. But the daughters and the sons can be left unsupervised (as long as the other rules are applied).
What is the sequence that the people should follow in order to cross the river through the raft keeping in mind all the rules?
The rules are applicable not only in the raft but also outside the raft.
Three people enter a room and have a green or blue hat placed on their heads. They cannot see their own hat but can see the other hats.
The colour of each hat is purely random. They could all be green, blue, or any combination of green and blue.
They need to guess their own hat colour by writing it on a piece of paper, or they can write 'pass'.
They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.
If at least one of them guesses correctly they win $10,000 each, but if anyone guesses incorrectly they all get nothing.
What is the best strategy?
Today is John's birthday.
A year ago, John had five candles and he lit all the candles except the one at the last.
Now he is going to light all the candles.
Below, you will find the mathematical proof that 10 equals 9.99999?. But is that possible or there is something wrong about it? Can you find the error?
x = 9.999999...
10x = 99.999999...
10x - x = 90
9x = 90
x = 10