If we tie a Sheep to one peg, a circled grass is been eaten by the Sheep. If we tie the Sheep to two pegs with a circle on its neck, then an eclipse is eaten out of the grass by the Sheep. If we want an eclipse then we put two pegs and then put a rope in between them and the other end of the rope is tied up on the Sheep's neck.
How should we tie the peg and the Sheep so that a square is eaten out from the garden grass? We only have one Sheep rope and the peg and the rings.
There are three light switches outside a room. One of the switches is connected to a light bulb inside the room.
Each of the three switches can be either 'ON' or 'OFF'.
You are allowed to set each switch the way you want it and then enter the room(note: you can enter the room only once)
Your task is to then determine which switch controls the bulb?
Three men in a cafe order a meal the total cost of which is $15. They each contribute $5. The waiter takes the money to the chef who recognises the three as friends and asks the waiter to return $5 to the men.
The waiter is not only poor at mathematics but dishonest and instead of going to the trouble of splitting the $5 between the three he simply gives them $1 each and pockets the remaining $2 for himself.
Now, each of the men effectively paid $4, the total paid is therefore $12. Add the $2 in the waiters pocket and this comes to $14. Where has the other $1 gone from the original $15?
You stand in front of two doors. A guard stands next to each door. You know the following things: one path leads to paradise, the other leads to death. You cannot distinguish between the two doors. You also know that one of the two guards always tells the truth and the other always lies. You have permission to ask one guard one question to discover which door leads to paradise. What one question would you ask to guarantee you enter the door to paradise?