You are a cab driver who pools passengers. You pick 3 people from a destination and drop 1 after an hour. 2 people climb aboard at the same time and you drop 3 at the next destination. After some time, you pick 2 passengers only to drop 1 after a short distance where 3 more passengers climb up the cab. You leave the rest of the passengers one by one to their destination and then come back home.
There were two grandmothers and their two granddaughters.
There were two husbands and their two wives.
There were two fathers and their two daughters.
There were two mothers and their two sons.
There were two maidens and their two mothers.
There were two sisters and their two brothers.
Yet there are only six, who are buried here,
All are born legitimate and relationships clear.
How can this happen?
On the dull night when the blonde was dozing, she heard an odd clamour and she saw that there was a bizarre man with a gun simply outside her home. So she raced to the telephone to call the police, however, she can't dial 911. Why?
You along with your friend are standing in front of two houses. Each of those houses inhabits a family with two children.
Your friend tells you the below two facts:
1) On your left is a family that has a boy who likes accounts but the other child loves science.
2) On the right is a family with a seven-year-old boy and a newborn baby.
You ask him, "Does either of the family have a girl?"
To this, he replies, "I am not quite sure. But can you guess that? If you are right, I will give you $500."
Which family do you think is likely to have a girl?
Imagine a box with two cogwheels, one big with 24 teeth and one small with 8 teeth. The big one is firmly attached to the center of the box which means it does not turn or move while the small one rotates around the big one.
How many times do you think that the smaller wheel will turn compared to the box when it turns once around the big one?
The day before the 1996 U.S. presidential election, the NYT Crossword contained the clue “Lead story in tomorrow’s newspaper,” the puzzle was built so that both electoral outcomes were correct answers, requiring 7 other clues to have dual responses.