A boy purchased a book from a bookkeeper and gave him $100.
The cost of the book is $50 but the bookkeeper has no change, so he gets the change from the next shop and returns the boy his $50.
After some time the next shopkeeper came with the $100 note and told the bookkeeper that the note was a fraud, so he took the money back.
The host of a game show, offers the guest a choice of three doors. Behind one is a expensive car, but behind the other two are goats.
After you have chosen one door, he reveals one of the other two doors behind which is a goat (he wouldn't reveal a car).
Now he gives you the chance to switch to the other unrevealed door or stay at your initial choice. You will then get what is behind that door.
You cannot hear the goats from behind the doors, or in any way know which door has the prize.
There is a box in which distinct numbered balls have been kept. You have to pick two balls randomly from the lot.
If someone is offering you a 2 to 1 odds that the numbers will be relatively prime, for example
If the balls you picked had the numbers 6 and 13, you lose $1.
If the balls you picked had the numbers 5 and 25, you win $2.
Suppose we lay down two cups in front of you. One of the cups is filled with tea and the other one with coffee. Now we ask you to take a spoonful of tea and mix it with the coffee. At this moment, the coffee cup has a mixture of tea and coffee. You have to take that mixture (spoonful) and add it back to the tea.
Can you now tell if the cup of coffee has more tea or the cup of tea has more coffee?