Only one colour, but not one size,
Stuck at the bottom, yet easily flies.
Present in sun, but not in rain,
Doing no harm, and feeling no pain.
What is it?
In front of you, there are 9 coins. They all look absolutely identical, but one of the coins is fake. However, you know that the fake coin is lighter than the rest, and in front of you is a balance scale. What is the least number of weightings you can use to find the counterfeit coin?
There is a brick of gold and a brick of iron in a boat (both 10-inch blocks), if they are both dropped into the water which will make the water level higher?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
A bus driver was heading down a street in Mexico. He went right past a stop sign without stopping, he turned left where there was a "no left turn" sign, and he went the wrong way on a one-way street. Then he went on the left side of the road past a cop car. Still - he didn't break any traffic laws. Why not?