A man has eighty-one cows ( numbered 1,2,3...81 as such). The beauty is that cow no. 1 gives 1ltr of milk, cow no. 2 gives 2ltrs of milk and so on. The man wants to equally distribute the cows among his nine sons so that each one of them gets the same quantity of milk.
At a party, there are five people and a whole round cake lying at the centre of the table. Only four people will make a cut and take their piece and the last one will get the remaining piece on the table. How can they make sure that everyone gets a 1/5th of the piece?
Three cars are driving on a track that forms a perfect circle and is wide enough that multiple cars can pass anytime. The car that is leading in the race right now is driving at 55 MPH and the car that is trailing at the last is going at 45 MPH. The car that is in the middle is somewhere between these two speeds.
Right now, you can assume that there is a distance of x miles between the leading car and the middle car and x miles between the middle car and the last car and also, x is not equal to 0 or 1.
The cars maintain their speed till the leading car catches up with the last car and then every car stops. In this scenario, do you think of any point when the distance between any two pairs will again be x miles i.e. the pairs will be x distance apart at the same time ?
While handling a project, the landscaper is asked by the owner of the mansion that he wants four trees in front of his mansion that are exactly equidistant from each other.