Eight Chelsea player makes the following statements :
1. Seven of us are lying here.
2. Six of us are lying here.
3. Five of us are lying here.
4. Five of us are lying here.
5. Four of us are lying here.
6. Three of us are lying here.
7. My name is Torres.
8. My name is Lampard.
The last two are Lampard and Torres or maybe Torres and Lampard.
So can you deduce which of the last two is Lampard or Torres?
Once upon a time, there was a castle on a square island. The entire island was surrounded by a 14m wide trench. The Romans had wanted to invade the castle and had brought a few wooden planks along with them to facilitate themselves in crossing the moat. The planks were however found to be only 13m long.
The Romans still managed to cross the trench. How did they do it?
A time long back, there lived a king who ruled the great kingdom of Trojan House. As a part of the renovation of the kingdom to meet future security needs, he asked his chief architect to lay down a new play in a manner that all of his 10 castles are connected through five straight walls and each wall must connect four castles together. He also asked the architect that at least one of his castles should be protected with walls. The architect could not come up with any solution that served all of King's choices, but he suggested the best plan that you can see in the picture below. Can you find a better solution to serve the king's demand?
The husband and wife were jogging in the morning. To match every two steps of the husband, the wife required three steps. If Both of them start with the here right foot. After how many steps do their left foot be together?
A convention is held where all the big logicians are summoned. The master places a band on everyone's forehead. Now all of them can see others bands but can't see his own. Then they are told that there are different colours of bands. All the logicians sit in circle and they are further explained that a bell will ring at regular intervals. The moment when a logician knew the colour of band on his forehead, he will leave at the next bell. If anyone leaves at the wrong bell, he will be disqualified.
The master assures the logicians that the puzzle will not be impossible for anyone of them. How will the logicians manage ?