A car is crossing a 20 km-long bridge. The bridge can support at most 1500kg of weight over it. If somehow, the weight on the bridge becomes more than that, it will break.
Now, the weight of the car is exactly 1500kg. At the midway, a bird comes and sits on the roof of the car. This bird weighs exactly 200 grams.
Can you tell if the bridge breaks at this point or not?
In a box, there is a jumble of 7 red balls, 6 blue balls, 5 green balls, and 4 yellow balls. What is the minimum number of balls, will you have to pick up so that you have at least 4 balls of the same colour?
Four cars come to a four-way stop, each coming from a different direction. They can’t decide who got there first, so they all go forward at the same time. All 4 cars go, but none crash into each other. How is this possible?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
You are provided with a grid (as shown in the picture). Can you fill the squares with numbers 1-8 in a manner that none of the two consecutive numbers are placed next to each other in any direction (vertically, horizontally or diagonally?)
You walk into a room and see a bed. On the bed, there are two dogs, five cats, a giraffe, six cows, and a goose. There are also three doves flying above the bed. How many legs are on the floor?