The Federal bank of London is abducted by the robbers. The head of the robbers asked the cashier to empty their money vault to them and when suddenly cashier got a call from her father. To avoid any suspicion, the robber asked the cashier to pick the call and reply her father in the shortest manner possible.
The cashier told her father "Is there an emergency father, Call me when you are free and I will help you in your furnishing" and then the cashier hung up the phone.
After 10 minutes, police arrived at the crime scene.
A solo dice game is played. In this game, upon each turn, a normal pair of dice is rolled and the score is calculated not by adding the numbers but multiplying them.
In a particular game, the score for the second roll is five more than what was achieved in the first roll. The score for the third roll is six less than what was completed in the second roll. The score for the fourth roll is eleven more than what was achieved in the third. The score for the fifth roll is eight less than what was completed in the fourth.
Can you calculate the score for each of the five throws?
You order chicken wings at KFC in the boxes of 6, 9 and 20. What is the largest number of wings that you cannot obtain by buying in any combination of the boxes?
Three cars are driving on a track that forms a perfect circle and is wide enough that multiple cars can pass anytime. The car that is leading in the race right now is driving at 55 MPH and the car that is trailing at the last is going at 45 MPH. The car that is in the middle is somewhere between these two speeds.
Right now, you can assume that there is a distance of x miles between the leading car and the middle car and x miles between the middle car and the last car and also, x is not equal to 0 or 1.
The cars maintain their speed till the leading car catches up with the last car and then every car stops. In this scenario, do you think of any point when the distance between any two pairs will again be x miles i.e. the pairs will be x distance apart at the same time ?
A mathematics teacher took exams for his students. Out of the total students, 25% passed both the tests included in the exam. However, only 42% were able to clear the first test.
Can you find out the percentage of those students who passed the first test and also passed the second test?
John Went to the nearby store in a Mall to buy something for her home. Below is the conversation between the two:
John: How much for the one?
Shopkeeper: It is $2
John: How much for the Eleven?
Shopkeeper: It is $4
John: How much for the Hundred?
Shopkeeper: It is $6.
In a box, there is a jumble of 7 red balls, 6 blue balls, 5 green balls, and 4 yellow balls. What is the minimum number of balls, will you have to pick up so that you have at least 4 balls of the same colour?