Take number 1000 and then add 20 to it.
Now add 1000 one more time.
Now add 30.
Now add 1000 one more time.
Now add 40.
Now add 1000 one more time.
Now add 10.
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
Jack have ten pairs of black socks, eight pairs of white socks and seven pairs of green socks. Everything is mixed in a draw. As there is no light he were not able to identify the colour of the socks. How many of the socks did he want to take to match one pair