There are hundred red gems and hundred blue gems. The blue gems are priceless while the red gems equal wastage. You have two sacks one labeled Heads and the other Tails. You have to distribute the gems as you want in the two sacks. Then a coin will be flipped and you will be asked to pick up a gem randomly from the corresponding sacks.
How will you distribute the gems between the sacks so that the odds of picking a Blue gem are maximum?
Its something that each of us devours,
Not just us but birds, beats, trees, and flowers,
Frets iron and nibbles steel,
Toil hard stones to meal,
Exterminates king, collapse town,
And blows the mountains down.
Three men in a cafe order a meal the total cost of which is $15. They each contribute $5. The waiter takes the money to the chef who recognises the three as friends and asks the waiter to return $5 to the men.
The waiter is not only poor at mathematics but dishonest and instead of going to the trouble of splitting the $5 between the three he simply gives them $1 each and pockets the remaining $2 for himself.
Now, each of the men effectively paid $4, the total paid is therefore $12. Add the $2 in the waiters pocket and this comes to $14. Where has the other $1 gone from the original $15?
On rolling two dices (six-sided normal dice) together, what is the probability that the first one comes up with a 2 and the second one comes up with a 5?