You visit a home for specially-abled children on the occasion of Christmas where you meet with 50 children. You have a box of chocolates containing 50 chocolates exactly.
What if you were asked to one chocolate to each child in a manner that one chocolate still remains in the box? Is it possible?
You are provided with a grid (as shown in the picture). Can you fill the squares with numbers 1-8 in a manner that none of the two consecutive numbers are placed next to each other in any direction (vertically, horizontally or diagonally?)
In front of you, there are 9 coins. They all look absolutely identical, but one of the coins is fake. However, you know that the fake coin is lighter than the rest, and in front of you is a balance scale. What is the least number of weightings you can use to find the counterfeit coin?
There are two dice with empty faces in front of you and a marker. You can mark any number on each of the faces of the two dice, but you have to display all 31 days of the month using the two of them.
Which numbers will you mark on which dice so that you can easily depict all the dates of the month?