Imagine a box with two cogwheels, one big with 24 teeth and one small with 8 teeth. The big one is firmly attached to the center of the box which means it does not turn or move while the small one rotates around the big one.
How many times do you think that the smaller wheel will turn compared to the box when it turns once around the big one?
There is a river to cross using a river raft and there are eight people (father, mother, policeman, thief, 2 daughters and 2 sons). No one knows to operate the raft except the adults and also excluding the thief. Only two people can go in the raft at a time. The raft should keep coming back and forth in order to pick and drop the people.
Rules to be followed:
Father: the father cannot stay in the raft or outside the raft without the presence of the mother.
Mother: the mother cannot stay in the raft or outside the rat without the presence of the father.
Thief: the thief is not allowed to stay with any of the family members unless there is a policeman.
Policeman: the policeman can travel with anyone.
2 sons and 2 daughters: they are not allowed to travel in the raft without the presence of an adult. They cannot either travel in the presence of only thieves without the policeman. The sons cannot be with their mothers without their father's supervision. The daughters are not allowed to be there with their fathers without the supervision of their mothers. But the daughters and the sons can be left unsupervised (as long as the other rules are applied).
What is the sequence that the people should follow in order to cross the river through the raft keeping in mind all the rules?
The rules are applicable not only in the raft but also outside the raft.
In a school, there are four subjects. Seventy percent of students study English, seventy five percent of students study Science, eighty five percent of students study Mathematics and eighty percent of students study Spanish.
Can you calculate the percentage of students that study all four subjects?
Jim and Sarah are in a long-distance relationship. Jim buys an engagement ring for Sarah and wants to mail it to her. Unfortunately, the only way to ensure the ring will be received is to place a lock on the package. Jim has locks and Sarah has locks, but neither has keys for each other’s locks. How can they make sure the ring isn’t stolen?
The day before the 1996 U.S. presidential election, the NYT Crossword contained the clue “Lead story in tomorrow’s newspaper,” the puzzle was built so that both electoral outcomes were correct answers, requiring 7 other clues to have dual responses.