You are a prisoner sentenced to death. The Emperor offers you a chance to live by playing a simple game. He gives you 50 black marbles, 50 white marbles, and 2 empty bowls. He then says, 'Divide these 100 marbles into these 2 bowls. You can divide them any way you like as long as you use all the marbles. Then I will blindfold you and mix the bowls around. You then can choose one bowl and remove ONE marble. If the marble is WHITE you will live, but if the marble is BLACK... you will die.'
How do you divide the marbles up so that you have the greatest probability of choosing a WHITE marble?
It has five wheels, though often think four, You cannot use it without that one more, You can put things in it, you can strap things on top, You can't find it in the market, but you can still go shop. What is it?
You want to boil a two-minute egg. If you only have a three-minute timer (hourglass), a four-minute timer and a five-minute timer, how can you boil the egg for only two minutes?
There is a hypothetical state between the USA and Mexico border 'Tango'.
Here 70 percent of the population have defective eyesight, 75 percent are hard of hearing, 80 percent have Nose trouble and 85 percent suffer from allergies, what percentage (at a minimum) suffer from all four ailments?
Three people enter a room and have a green or blue hat placed on their heads. They cannot see their own hat but can see the other hats.
The colour of each hat is purely random. They could all be green, blue, or any combination of green and blue.
They need to guess their own hat colour by writing it on a piece of paper, or they can write 'pass'.
They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.
If at least one of them guesses correctly they win $10,000 each, but if anyone guesses incorrectly they all get nothing.
What is the best strategy?
The day before the 1996 U.S. presidential election, the NYT Crossword contained the clue “Lead story in tomorrow’s newspaper,” the puzzle was built so that both electoral outcomes were correct answers, requiring 7 other clues to have dual responses.