A man is walking down a road with a basket of eggs. As he
is walking he meets someone who buys one-half of his eggs
plus one-half of an egg.
He walks a little further and meets another person who buys
one-half of his eggs plus one-half of an egg.
After proceeding further he meets another person who buys
one-half of his eggs plus one half an egg. At this point, he
has sold all of his eggs, and he never broke an egg.
How many eggs did the man have to start with?
Sally lives in a place where six months of the year is mild summer and the temperature drops significantly the other six months. She owns a lake where there is a small island. She wants to build a house on the island and needs to get materials there. She doesn’t have a boat, plane, or anything to transport them to the island. How does Sally solve this problem?
A convention is held where all the big logicians are summoned. The master places a band on everyone's forehead. Now all of them can see others bands but can't see his own. Then they are told that there are different colours of bands. All the logicians sit in circle and they are further explained that a bell will ring at regular intervals. The moment when a logician knew the colour of band on his forehead, he will leave at the next bell. If anyone leaves at the wrong bell, he will be disqualified.
The master assures the logicians that the puzzle will not be impossible for anyone of them. How will the logicians manage ?
It's pretty hard to give up.
If you remove a part of it, you will be left with a bit.
Even if you remove another part, the bit still remains.
Remove one more and it still remains.
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.