How many people must be gathered together in a room, before you can be certain that there is a greater than 50/50 chance that at least two of them have the same birthday?
Three friends decide to distribute the soda cans they had among them. When all of them had drunk four cans each, the total number of cans that remained was equal to the cans each one of them had after they had divided the cans.
Can you calculate the total number of cans before distribution?
A four-digit number (not beginning with 0) can be represented by ABCD. There is one number such that ABCD=A^B*C^D, where A^B means A raised to the B power. Can you find it?
Two fathers and two sons decided to go to a shop and buy some sweets upon reaching. Each of them bought 1 kg of sweet. All of them returned home after some time and found out that they had 3kg of sweets with them.
They did not eat the sweets in the way, nor threw or lose anything. Then, how can this be possible?