One day, I thought of ways that can be used for creating a palindrome. So I decided that I will turn into a larger number by adding the reversed digits to the original number and keep doing it till I finally obtained a palindrome.
I am not sure if this process will always result in a palindrome eventually but I was able to produce a four-digit palindrome. Can you guess my starting number?
I have two coins.
* One of the coins is a faulty coin having a tail on both sides of it.
* The other coin is a perfect coin (heads on side and tail on other).
I blindfold myself and pick a coin and put the coin on the table. The face of the coin towards the sky is the tail.
What is the probability that another side is also tail?
There are hundred red gems and hundred blue gems. The blue gems are priceless while the red gems equal wastage. You have two sacks one labeled Heads and the other Tails. You have to distribute the gems as you want in the two sacks. Then a coin will be flipped and you will be asked to pick up a gem randomly from the corresponding sacks.
How will you distribute the gems between the sacks so that the odds of picking a Blue gem are maximum?