I have two coins.
* One of the coins is a faulty coin having a tail on both sides of it.
* The other coin is a perfect coin (heads on side and tail on other).
I blindfold myself and pick a coin and put the coin on the table. The face of the coin towards the sky is the tail.
What is the probability that another side is also tail?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.