I have two coins.
* One of the coins is a faulty coin having a tail on both sides of it.
* The other coin is a perfect coin (heads on side and tail on other).
I blindfold myself and pick a coin and put the coin on the table. The face of the coin towards the sky is the tail.
What is the probability that another side is also tail?
100 prisoners are stuck in the prison in solitary cells. The warden of the prison got bored one day and offered them a challenge. He will put one prisoner per day, selected at random (a prisoner can be selected more than once), into a special room with a light bulb and a switch which controls the bulb. No other prisoners can see or control the light bulb. The prisoner in the special room can either turn on the bulb, turn off the bulb or do nothing. On any day, the prisoners can stop this process and say "Every prisoner has been in the special room at least once". If that happens to be true, all the prisoners will be set free. If it is false, then all the prisoners will be executed. The prisoners are given some time to discuss and figure out a solution. How do they ensure they all go free?
Four people need to cross a rickety bridge at night. Unfortunately, they have only one torch and the bridge is too dangerous to cross without one. The bridge is only strong enough to support two people at a time. Not all people take the same time to cross the bridge. Times for each person: 1 min, 2 mins, 7 mins and 10 mins. What is the shortest time needed for all four of them to cross the bridge?
There is a straight highway. Four different villages lie on that highway. The distance between them is different. The third village is 60km away from the first village; the fourth is 40 km away from the second; the third is 10 km near to the fourth that it is to the second.
Can you calculate the distance between the fourth and the first village ?