A man had five children. He had $100 with him to give to his children. He decided to start with the youngest child and then give $2 more than each younger child to his next elder child.
For example, if he gives $x to the youngest child, he will give $(x+2) to the next one, $[(x+2) + 2] to the next one and so on.
Can you find out how much did the youngest one receive?
You are a prisoner sentenced to death. The Emperor offers you a chance to live by playing a simple game. He gives you 50 black marbles, 50 white marbles, and 2 empty bowls. He then says, 'Divide these 100 marbles into these 2 bowls. You can divide them any way you like as long as you use all the marbles. Then I will blindfold you and mix the bowls around. You then can choose one bowl and remove ONE marble. If the marble is WHITE you will live, but if the marble is BLACK... you will die.'
How do you divide the marbles up so that you have the greatest probability of choosing a WHITE marble?
I can sizzle like bacon,
I am made with an egg,
I have plenty of backbone, but lack a good leg,
I peel layers like onions, but still remain whole,
I can be long, like a flagpole, yet fit in a hole.
It spends most of its day eating white, but when it’s quick enough, it gets to eat fruit and sometimes some blue things. It’s in a dark room, where the walls are blue, it runs from a ghost that roams the halls and haunts it all the time. What is it?
You need to complete the maze by entering from the entrance marked below in the figure near the yellow circle, bottom left and leaving from the exit point near the green circle, bottom middle.
Rule of Game: You can move only by exchanging green and yellow circles.
There are three boxes which are labeled as Rs100, Rs150, and Rs200. One box contains two notes of Rs. 50. The second box contains one note of Rs50 and one note of Rs100 The third box contains two Rs. 100 notes. All boxes are labeled incorrectly.
What is the minimum number of boxes you must check in order to label all boxes correctly?
Three fair coins are tossed in the air and they land with heads up. Can you calculate the chances that when they are tossed again, two coins will again land with heads up?