The captain of a ship was telling this interesting story: "We travelled the sea far and wide. At one time, two of my sailors were standing on opposite sides of the ship. One was looking west and the other one east. And at the same time, they could see each other clearly." How can that be possible?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
In the picture, you can see a chess board. On the top left position, the K marks a knight. Now, can you move the knight in a manner that after 63 moves, the knight has been placed at all the squares exactly once excluding the starting square?