A worker is to perform work for you for seven straight days. In return for his work, you will pay him 1/7th of a bar of gold per day. The worker requires a daily payment of 1/7th of the bar of gold. What and where are the fewest number of cuts to the bar of gold that will allow you to pay him 1/7th each day?
I am a word that begins with the letter “i.†If you add the letter “a†to me, I become a new word with a different meaning, but that sounds exactly the same. What word am I?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
If we tie a Sheep to one peg, a circled grass is been eaten by the Sheep. If we tie the Sheep to two pegs with a circle on its neck, then an eclipse is eaten out of the grass by the Sheep. If we want an eclipse then we put two pegs and then put a rope in between them and the other end of the rope is tied up on the Sheep's neck.
How should we tie the peg and the Sheep so that a square is eaten out from the garden grass? We only have one Sheep rope and the peg and the rings.