I am thinking of a five-digit number such that:
The first and last digits are the same, their submission is an even number and multiplication is an odd number and is equal to the fourth number. Subtract five from it and we obtain the second number. Then divide into exact halves and we get the 3rd number.
A 3 digit number is such that it's unit digit is equal to the product of the other two digits which are prime. Also, the difference between it's reverse and itself is 396.
You need to complete the maze by entering from the entrance marked below in the figure near the yellow circle, bottom left and leaving from the exit point near the green circle, bottom middle.
Rule of Game: You can move only by exchanging green and yellow circles.
I have two coins.
* One of the coins is a faulty coin having a tail on both sides of it.
* The other coin is a perfect coin (heads on side and tail on other).
I blindfold myself and pick a coin and put the coin on the table. The face of the coin towards the sky is the tail.
What is the probability that another side is also tail?
A mathematics teacher took exams for his students. Out of the total students, 25% passed both the tests included in the exam. However, only 42% were able to clear the first test.
Can you find out the percentage of those students who passed the first test and also passed the second test?
A man walked into a pub and went straight towards the Barman. He asked for a dirty martini from the Barman. The Barman thought something and then pulled out a pistol from his drawer and aimed it directly at the man. Why did he do that?