A worker is to perform work for you for seven straight days. In return for his work, you will pay him 1/7th of a bar of gold per day. The worker requires a daily payment of 1/7th of the bar of gold. What and where are the fewest number of cuts to the bar of gold that will allow you to pay him 1/7th each day?
In a competitive exam, each correct answer could win you 10 points and each wrong answer could lose you 5 points. You sat in the exam and answered all the 20 questions, which were given in the exam.
When you checked the result, you scored 125 marks on the test.
Can you calculate how many answers given by you were wrong?
You are given 16 witch hats. The hats are divided in four different colours – red, blue, green and yellow. Every colour has been assigned to four hats. Now each of the hat will be glued with a label of an arithmetic sign – ‘+’, ‘-‘, ‘x’ or ‘/’. But you can label one sign only once on one colour. In such an arrangement, the hats can be uniquely defined by its colour and symbol.
Can you arrange all the 16 hats in a 4x4 grid in a fashion that no two rows and columns have a repetition of colour or sign?
We have arranged four hats in the below picture to assist you.
A man desired to get into his work building, however he had forgotten his code.
However, he did recollect five pieces of information
* Fifth number + Third number = 14
* The fourth number is one more than the second number.
* The first number is one less than twice the second number.
* The second number and the third number equals 10.
* The sum of all five numbers is 30.
John and his wife were living in a rural place. On a particular day, John's wife fell ill and he called the local doctor. When the doctor picked up, he said, "Doctor, my wife is ill. She might have appendicitis."
"This can't be possible! I took out her appendix two years ago myself," the doctor explained.
When diagnosed, John's wife was found to have appendicitis. How can this be possible?
Three people enter a room and have a green or blue hat placed on their heads. They cannot see their own hat but can see the other hats.
The colour of each hat is purely random. They could all be green, blue, or any combination of green and blue.
They need to guess their own hat colour by writing it on a piece of paper, or they can write 'pass'.
They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.
If at least one of them guesses correctly they win $10,000 each, but if anyone guesses incorrectly they all get nothing.
What is the best strategy?