In the Chess Board picture below white army is arranged. You need to add a black army on the board such that no piece is under any threat.
Note: Army comprised of 1 king, 1 queen, 2 rooks, 2 bishops, 2 knights, and 8 pawns.
A deaf and mute man goes to the train station. Tickets for the train are 50 cents each. The man goes to the ticket booth and hands the man inside just a dollar. The man in the booth hands him two tickets.
How did the man in the booth know to give him two tickets without even looking at him?
I have thought of a number that is made up by using all the ten digits just once. Here are a few clues for you to guess my number:
First digits is divisible by 1.
First two digits are divisible by 2.
First three digits are divisible by 3.
First four digits are divisible by 4.
First five digits are divisible by 5.
First six digits are divisible by 6.
First seven digits are divisible by 7.
First eight digits are divisible by 8.
First nine digits are divisible by 9.
The number is divisible by 10.
As we know that white starts the game of chess. Can you find the scenario shown in the picture below is possible when all the white pieces are at the original place while the black pawn is not as in the below picture?