If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
A man died, leaving $10,000,000 for his widow, 5 sons and 4 daughters. Each daughter received an equal amount, each son received twice as much as a daughter, and the widow received three times as much as a son.
A dying old man wants to divide his entire land between his only two sons. Since his only wish is to treat them as equal as both of them have been too good to him, he wants to divide his land equally between them. The problem is that the land is significantly irregular in shape and thus there is no choice of cutting them into two equal halves.
Can you help him divide the land in a manner that both of his sons will be happy?