In the picture, you can see a chess board. On the top left position, the K marks a knight. Now, can you move the knight in a manner that after 63 moves, the knight has been placed at all the squares exactly once excluding the starting square?
Seven Robbers robbed a bank and hide the coins in a lonely place.
They decide to divide the money equally the next morning. Two greedy robbers decided to cheat the others and reach the place at night. They equally divided the coins between them, one coin left. So they called another robber and then they decided to divide equally among the three. Sadly again one coin left. The same thing happened to the 4th 5th and the 6th robber.
However, when the 7th robber reached in the morning, they can divide the coins equally.
There is a box in which distinct numbered balls have been kept. You have to pick two balls randomly from the lot.
If someone is offering you a 2 to 1 odds that the numbers will be relatively prime, for example
If the balls you picked had the numbers 6 and 13, you lose $1.
If the balls you picked had the numbers 5 and 25, you win $2.