In the picture, you can see a chess board. On the top left position, the K marks a knight. Now, can you move the knight in a manner that after 63 moves, the knight has been placed at all the squares exactly once excluding the starting square?
I am thinking of a five-digit number such that:
The first and last digits are the same, their submission is an even number and multiplication is an odd number and is equal to the fourth number. Subtract five from it and we obtain the second number. Then divide into exact halves and we get the 3rd number.
I can turn polar bears white.
I can make anyone dance.
I can make everyone cry
I can make your hands clap
I can make you thin.
I can make you smile.
I can make you smile
Only one colour, but not one size,
Stuck at the bottom, yet easily flies.
Present in sun, but not in rain,
Doing no harm, and feeling no pain.
What is it?
There is a box in which distinct numbered balls have been kept. You have to pick two balls randomly from the lot.
If someone is offering you a 2 to 1 odds that the numbers will be relatively prime, for example
If the balls you picked had the numbers 6 and 13, you lose $1.
If the balls you picked had the numbers 5 and 25, you win $2.
There are people and strange monkeys on this island, and you can not tell who is who (Edit: until you understand what they said - see below). They speak either only the truth or only lies.
Who are the following two guys?
A: B is a lying monkey. I am human.
B: A is telling the truth.