If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.
You need to complete the maze by entering from the entrance marked below in the figure near the yellow circle, bottom left and leaving from the exit point near the green circle, bottom middle.
Rule of Game: You can move only by exchanging green and yellow circles.
A man had five children. He had $100 with him to give to his children. He decided to start with the youngest child and then give $2 more than each younger child to his next elder child.
For example, if he gives $x to the youngest child, he will give $(x+2) to the next one, $[(x+2) + 2] to the next one and so on.
Can you find out how much did the youngest one receive?
I want to fill my bucket using both cold and hot water.
I have two taps for both cold and hot water. The hot water tap fills the bucket in exact 6 hours and the cold water tap fills the bucket in exact 4 hours.
I turn both of them simultaneously but I forgot to turn off another tap which removes the water out of the bucket. This tap can empty the bucket in 12 hours.