A hen, a dog, and a cat are stolen. Three suspects are arrested named Robin, Steve, and Tim. The police are sure that all of them stole one of the animals but they don't know who stole which animal.
Sherlock Holmes is appointed to identify and is provided with the following statements from the investigation.
Robin - Tim stole the hen
Steve - Tim stole the dog
Tim - Both Robin and Steve are lying. I neither stole a hen nor a dog.
Sherlock is somehow able to deduce that the man who stole the cat is telling a lie and the man who stole the hen is telling truth.
Three people enter a room and have a green or blue hat placed on their heads. They cannot see their own hat but can see the other hats.
The colour of each hat is purely random. They could all be green, blue, or any combination of green and blue.
They need to guess their own hat colour by writing it on a piece of paper, or they can write 'pass'.
They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.
If at least one of them guesses correctly they win $10,000 each, but if anyone guesses incorrectly they all get nothing.
What is the best strategy?
I went to the bookshop and spent one-half of the money that was in my purse.
When I came out, I found that I had as many cents as I had dollars and half as many dollars as I had cents when I went in. Find the money in my purse when I entered the store.
You are given 16 witch hats. The hats are divided in four different colours – red, blue, green and yellow. Every colour has been assigned to four hats. Now each of the hat will be glued with a label of an arithmetic sign – ‘+’, ‘-‘, ‘x’ or ‘/’. But you can label one sign only once on one colour. In such an arrangement, the hats can be uniquely defined by its colour and symbol.
Can you arrange all the 16 hats in a 4x4 grid in a fashion that no two rows and columns have a repetition of colour or sign?
We have arranged four hats in the below picture to assist you.