Two friends were stuck in a cottage. They had nothing to do and thus they started playing cards. Suddenly the power went off and Friend 1 inverted the position of 15 cards in the normal deck of 52 cards and shuffled it. Now he asked Friend 2 to divide the cards into two piles (need not be equal) with equal number of cards facing up. The room was quite dark and Friend 2 could not see the cards. He thinks for a while and then divides the cards in two piles.
On checking, the count of cards facing up is same in both the piles. How could Friend 2 have done it ?
I have thought of a number that is made up by using all the ten digits just once. Here are a few clues for you to guess my number:
First digits is divisible by 1.
First two digits are divisible by 2.
First three digits are divisible by 3.
First four digits are divisible by 4.
First five digits are divisible by 5.
First six digits are divisible by 6.
First seven digits are divisible by 7.
First eight digits are divisible by 8.
First nine digits are divisible by 9.
The number is divisible by 10.