We know that money can be names differently for the purpose it is used for. Some of the examples of money given at following places or for following activities:
In temple = Daan
In school = Fees
During marriage = Dowry
For divorce = Alimony
Paying government = Tax
In court = Fine
Employer to employee = Salary
To kidnappers = Ransom
For illegal reason = Bribe
To civil servant retirees = Pension
Do you know what do we call the money a husband gives to his wife?
A convention is held where all the big logicians are summoned. The master places a band on everyone's forehead. Now all of them can see others bands but can't see his own. Then they are told that there are different colours of bands. All the logicians sit in circle and they are further explained that a bell will ring at regular intervals. The moment when a logician knew the colour of band on his forehead, he will leave at the next bell. If anyone leaves at the wrong bell, he will be disqualified.
The master assures the logicians that the puzzle will not be impossible for anyone of them. How will the logicians manage ?
Four children having five rocks each were playing a game in which they had to throw the rock at a particular solid area in the water. Child 1- Succeeded in throwing three rocks at a solid area but one of the rocks sunk. Child 3 - His aim was so bad that all rocks got sunk. Child 4- He was awesome and none of the rocks got sunk. Child 2 - Was the winner but was struck by a rock in the head and died. Who killed Child 2?
It has five wheels, though often think four, You cannot use it without that one more, You can put things in it, you can strap things on top, You can't find it in the market, but you can still go shop. What is it?
If a shopkeeper can only place the weights on one side of the common balance. For example, if he has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names of the weights you will need to measure all weights from 1 to 1000? This is a fairly simple problem and very easy to prove also.